

Dingjin has ability to design and manufacture
Spinning unit and frame structure hydraulic press with various tonnage
for various specification of vessel heads.

E-MAIL: chinadingjin@hotmail.com TEL: +86-411-39331632 +86-13372864339

ADD: No. 6 Youquan road, Zhanqian street,
Jinzhou district, Dalian
(The Second Factory) No. 23 Haiwan Road,
Economic Development Zone, Pulandian Dsitrict, Dalian

High Quality Vessel Head Fabricated by Dalian Dingjin

Dalian Dingjin General Machinery Co., Ltd

OMPANY profile

Dingjin is a professional manufacturer specialized in various vessel heads. spherical shell plates and the third classification pressure vessel. It was established in the year of 2000, its floor area is 74000m2. Dingjin has got the special equipment manufacture license of Grade A3 and A2, 1809001 Quality Certificate, and it has been identified as a national high-toch enterprise for continuous 9 years. Dingjin is the sub-committee on Boilers and Pressure Vessels, and China Forging Association. Dingjin is the governing unit of vessel heads branch and one of the editors of the national standard Heads for Pressure Vessels.

For more than a decade after starting business, Dingjin has already supplied foreign and domestic customers hundreds of thousands of various vessel heads. Product quality, delivery date and service all got good comments.

Quality Policy: Quality First, Customer Satisfaction.

Enterprise Tenet: Forging Ahead, Honesty and Trustworthiness,
Win-Win.

Main Processing Feature

Special Material

Large Specification

Complete types

Dingjin can fabricate vessel heads not only with carbon steel, alloy steel and stainless steel, but also have mature process technology and experience with aluminum, copper, titanium, dual-phase steel, high nickel steel as well as clad plate.

Following production capacity is for all type vessel heads with integral forming technology: Diameter \$10000mm, Thickness\$50mm (Spinning): Diameter\$6000mm, Thickness\$350mm (Stamping).

Elliptical head, torispherical head, hemispherical head, spherical crown head, toriconical head, flanged-bottom head, horn head, segment with edge, arc boiler furnace, furnace platform with outer flange, axisymmetric body head and spherical pressure vessel and so on.

Large Scale and Complete Production Equipment

Dingjin possesses large, medium, small three spinning units which are separately model Φ 10000°50mm, model Φ 95200°32mm (made in Germany), modelΦ2200°22mm. Stamping Equipment

There are 7 sets of double acting hydraulic press with following tonnage: 16000t, 8000t, 2000t (2 sets), 1000t (2 sets), 630t.

Configuration Equipment

There are 7 sets of heat treatment furnace, such as one pit electric furnace with model Φ 8300°2300mm, one set of smaller electric furnace and 5 sets of gas furnace. There is an automatic temperature control gas furnace with model 9800°1350mm and a counter type automatic temperature control gas furnace with model 97500°7500°2800.

There are 28 sets of cranes and the maximum lifting capacity is 75t.

There are 2 sets of polishing machines, 1 set of shot blasting machine, and 2 sets of CNC cutting machines.

There is one set of 9-meter Gantry planning milling boring machine made in Japan, one set of 6.3-meter CNC vertical lathe machine, one set of 1.6-meter and 3.4-meter vertical machine, and twenty sets of corollary machinine.

Dalian Dingjin Tenet

Dinglin adheres to the tenet "Forging Ahead, Honesty and Trustworthines, Win-Win" and supplies qualified products with favourable prices, timely delivery, and considerate service to you. Dinglin have confidence in providing the better service and the better products during business cooperation.

Qualification

Invention Patent

Spinning Equipment

Production Capacity

Diameter: Ф219~10000mm (Integral Forming)

Thickness: 2°50sm

Type: Elliptical head, torispherical head, hemispherical head, conical head, toriconical head, flat bottom head, and arc bottom head and so on.

Material: All kinds of carbon steel , alloy steel, stainless steel, clad plate, cooper, aluminum and titanium.

Processing Method: cold Spinning, cold stamping, being split and pressed

Model 5030 Sninning Unit Made in Germany DNS500 X 32

Production Capacity Diameter: 01900-5500 Thickness: 32mm (Maximum)

Dinglin has rich experience to dabricate spherical head, large conical head and spherical shell plate. Each piece of petal could be switched position after grooving. The alignment tolerance for clad plate spherical head and conical head could be controlled under 1 mm.

Production Capacity Diameter: Φ 750~2600mm Thickness: 22mm (Maximum)

2000t Three-cylinder Hydraulic Press

Stamping Equipment

2000t Hydraulic Press

630t Evdraulic Press

Dingiin also possesses following configuration equipment:1 set of 6.3m CNC vertical lathe machine. 1 set of 3.4m CNC vertical lathe machine. 1 set of 9m milling planning boring machine made in Japan, 1 set of 6m milling planning boring machine, 1 set of 2m boring machine, 1 set of 4m cylindrical grinder, 14 sets of horizontal lathe machine involving the ones with specification of 10m/6m/5m; automatic submerged arc welding machine, manual welding machine, argon arc welding machine; plasma cutting machine. Co2 gas shield welding machine. Copying cutting machine, automatic cutting machine, magnetic cutting machine: ultrasonic thickness gage, infrared thermometer, X-ray flaw detector, ultrasonic flaw detector and many other auxiliary equipment.

Model CW6280 Horizontal Lathe Machine 800 X 10m

Dingjin possesses a number of skilled experts, senior engineers and senior technicians who developed special processing technology for shell of revolution with spinning equipment on

site.

Dinjin has fabricated vessel heads with following special types by far: flanged oblique conical head, flanged smalleredge of conical head, flanged horn head, vessel head for furnace, cap typevessel head, stern typevessel head applied to submarine and special type rotating body.

Dingjin also processes offshore oil platform, separator internals in oil or gas or water service, conical body for beer project, offshore oil skid base.

Dingjin has successfully fabricated vessel heads with following material specification

c	Irdinary Material pecification	Special Material Specification	Special Material Specification
	Q235A	A283-C	SA516Gr.485
	Q235B	A5454	SA516Gr.70
	Q245R	2205	12Cr2MolVR
	Q345	2665	15CrMoR
	Q345R	5083-0	N0600
	304	HastelloyC-276	Ni201
	304H	A95803-0	SA533B-1
	304L	1060(L2)	SM400ZL
	316	L1	SuS316
	316L	BFe30-1-1	20HR-B
	06Cr19Ni10	LF2	Mone1400
	12Cr13	TA1	20HR-B
	06Cr13	TA2	NO8811
	022Cr17Ni12	Mo2 T2	P256GH
	00Cr17Ni14N	lo2 CCSA	L415MB

Dingjin has successfully fabricated vessel heads with following clad plate material specification

WI	th following clad plate	material specificati
	Q245R+S11348	TA+S30403
	Q245R+S30403	N04400+Q345R
	Q245R+S30408	N06600+S30408
	Q245R+S31603	15CrMoR+S31603
	Q345R+S11348	15CrMoR+S30403
	Q345R+S30403	15CrMoR+S32168
	Q345R+S30408	13MnNiMoR+S31603
	Q345R+S31608	12Cr3MoIR+S32168
	Q345R+S32168	Q245R+022Cr19Ni10
	Q345R+S22053	Q245R+06Cr19Ni10
	Q345R+N6	Q245R+06Cr17Ni12Mo2
	Q345R+N02201	Q245R+022Cr17Ni12Mo2
	Q345R+N0400	Q235B+304
	Q345R+NCu30	Q235B+Incoloy825
	Q345R+Inconel625	14Cr1MoR+304L
	Q345R+SAF2507	304+HastelloyC-276

Processing Scope

Product Range Type EH.TH.FH.CH.SDH						F	Processing Technology: Cold Spinning Horizontal : Carbon Steel Low Alloy Steel Stainless Steel and so on										n.																			
δ(mm)		3	4	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	35 40	45	50	100	15	0 200		300	40	00							
	300)				3	100														\Box			\Box												
300~350						Н															\neg	\neg	\neg	=	=	\mp	=		社	. /1	١		of diff			\blacksquare
350~650 650~750	_	_	-	-	-	₩		-	-	-	-	-	-	-	_	_	_	_	-	\rightarrow	\rightarrow	\rightarrow	-	\rightarrow	\rightarrow	-	+	_	11	. (1	color	lines	or am	erent		\vdash
750~850	_		-	-	-	++		-	-	_	-	-	-	-	-			_	-	\rightarrow	\rightarrow	\rightarrow	-	\rightarrow	\rightarrow	-	+	-			COIO	mies				-
850~1200	_		-	-	-	++		-	-	-	_	-		_	190	0			-	\rightarrow	\rightarrow	_	_	\rightarrow	-	_	_	-	-		P	roce	essin	q		-
1200~1900		210				•									100		210	0			\neg	$\overline{}$	_	\neg		_	_			ra	inge	for	larg	e		
1900~2100																					\neg			\neg						SE	oinn	ng i	unit			
2100~2400	2100)	25	00																										-,						
2400~2500																								=					_		- P	roce	essin	9		
2500~2700									_			_								2700	_		$\overline{}$	=		\perp				ra	inge	for	mec	fium		
2700~2800				_	_		-				_	_									\rightarrow	щ	_	_	_	-		-		s	oinn	ng i	unit			
2800~3000	_	_	_		_						_	-	_	_	_		_			\rightarrow	-	-	-	-	_	-	-	-								-
3000~3500 3500~3700	_	_	300	00 -		-	-	-	-	-	-	-	_	-			_	_	_	-	-	-	-	-	-	-	-	-	for mini-type spinning					-		
3700~3700	_			-		-	-	-	-		-	-	_	-				_	3700	-	-	-	\rightarrow	\rightarrow	\rightarrow	+	-	-		for	min	i-ty	pe sp	oinni	ng	-
3900~4000	_			_		_	-	-	_		-	-		-			_		3700	_	_	-	\rightarrow	\rightarrow	\rightarrow	+	_	-		uni	t (ilso	invo	lving	cold	-
4000~4300	-			_		-	_	-	-		-	-		-						$\overline{}$	\rightarrow	_	\rightarrow	\rightarrow	-	_	_	-		sta				men		-
4300~4400									-		-			-							\neg	_	\rightarrow	\neg		-		-	-		-Pro	ces	sing	rang	e	-
4400~4500																								\neg						for	hot	forr	ning	equ	pment	
4500~4700																								=					TH	nick	ness	froi	m 8r	nm t	400mm	,
4700~5000																								\Box		\perp			12	16	the .	nac	Hien	tion	nut.	
5000~5100					000																			=		\perp										
5100~5200								_													_	_	_	_		-				of t	he r	ang	e of	EH/I	H/CH	
5200~5400 5400~5500				-	-	-		-	-		-	-		_							-	-	-	-	_	+	-	-		in t	able	the	9 VO1	sel b	eads	\vdash
5400~5500 5500~6000	_			-	-	5500	_	-	-		-	-		5500				_	_	\rightarrow	-	-	\rightarrow	\rightarrow	_	-	_	-								-
5500~6500 6000~6500				-		2000	-	-		-	_		_	000		_	_	_	_		-	-	-	-	_	-	_	_						ed wi	th	\vdash
6500~7000				-	-	1	1															-	500	\rightarrow	_	-	_			bei	ng s	plit	to p	ress.		
7000~7200																					_	- 1		\neg												
7200~7500																					_								(3,					rowr		
7500~8000																								\equiv						he	ad c	an b	e pr	oces	sed	
8000~9000																						\equiv				\blacksquare				wit	th th	ickr	ess	from	1mm	
9000~9500																					9000															
9500~10000							_														_		_	_						to	100	mm.	_			
10000~11000										_																										
									1100	0							110	nn																		

Typical Product

Nan	ne Ellipt	tical Head	
Type & Specification	Material Specification	Type & Specification	Material Specification
ENA2956+6	316L	EH\8200+28	Q345R
EMA2412*14	A5454	EHA7000*18	Q245R
ENA2300+18	15CrMoR	ENA5600+72	_Q345R
EHA2300*8	0Cr25N120	EHA5000*18	02205
EllA2216+35	A1100	EH14600+20	09MnNIDR
EHA2200+4	HastelloyC-276	EHA4600+10	06Cr19N110
EHA2032*18	1060	EH14588*16	304L
EHA1700+22	\$31803	EH\4500*14	304
EBA1480+10	Incoloy825	EH14200+30	Q345R
EBA1400*18	Incone1600	EH14200*40	A95083+0
EHA1400+6	N6	EHA150+36	00Cr17N114Ms2
Eli/800+9	Mone1400	EH\900*8	Fe30-1-1
EHA5400+ (18+3)	Q245R+022Cy19N110	EHA3100*26	SM400B
EHA5000+(20+4)	9245R+0Cr18Ni10	EB\3000+50	Q245R
EHM200+(25+3)	9345R+0Cr13A1	EB\3000#28	Q345R
EHV3600+(14+3)	Q345R+321	ENA3000#18	TA2
EHA3400+(12+3)	Q345R+N6	EH\6700*28	SA516-70
EHA2000* (10+3)	Q345R+Mone1400	EHA8500×32	Q345R (N)

	Name	Hemis	spherical Head	
Tyr	pe & Specification	Material Specification	Type & Specification	Material Specification
	181A2600×82	Q345R (R-HIC)	H642813×100	14Cr1MoR
	8BA3390×170	2. 25Cr1No0. 25V	HUL2800× (35+3)	S32168+15CrMoR 00
	HHA3740×130	2. 25Cr1No0. 25V	HH9800*50	16WnDR
	HHA5413×124	SA387GR11CL2	H1290*12	ICr18Ni9Ti
	889A3013×70	12Cr2Wo1R	HH4205*(44+4)	14Cr1MoR+304L
	HHR200+(24+3)	Q345R+06Cr13		
	Name	Torisp	herical Head	
Typ	oe & Specification	Material Specification	Type & Specification	Material Specification
	THA3000+4	TA2	TH/9500 × 16	Q235B
	THA8800+14	06Cr19Ni10	THA6200×10	S30408
	TBA4324*26	Q3458	THB3454 × 20	SA516Gr. 70
	THA10000+33	304L	TH3400×10	Q3458
	Name	Torico	onical Head	
Typ	oe & Specification	Material Specification	Type & Specification	Material Specificatio
- 100	GWT2000/11666×25	Q3458	CBIS600/5400×26+3	Q345R00+S30403
	GM8000/7818×22	Q3458	CBA8168/9000×22	Q3458
	GM8484/7654×85	S840005.	CIW8484/7654×85	SM40021.
	-CH\$5200/9000×12	S30408	CHA7900/5400×26+3	Q345R(X0.±S30403
C	W3860/1377* (3+30)	\$3000-Q049(Novallant)	CHA5100/638×-(3+30)	S30403+Q345R
18.55	Name	Spher	rical Crown Head	
Tyn	oe & Specification	Material Specification	Type & Specification	Material Specification
	SDH1500+232	20MnMoNb	SZ#14600#[[6+3])	Q345R+B30
	SDH4500+5	TA2	S06440+3	Red Copper
_	SDB678*10	N08811	SBH5200*42	P265GH
1777	Name	Flang	ed Flat Bottom Head	THE L
Tyt	oe & Specification	Material Specification	Type & Specification	Material Specification
mm-	FH3300+32	Q2358	FH2000×60	Q245R
	FH1520+5	1.2	FHA2600 × 22	Q245R
	FH6500×38	S30409	FRA3600 × 12	S30409
11111	Name	Specia	al Vessel Heads and Produ	ucts
Tyr	se & Specification	Material Specification	Type & Specification	Material Specification
Art. Boston Steed	WD4200+12	Cr25Ni20Si2	Ф5000×32	Q235C
Hoes Head	Ф1824/1424+12	Q2358	Ф2135×14	S31603
		9235C		